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Abstract. We develop an analytical technique to derive explicit forms of thermodynamical quantities within
the asymptotic approach to non-extensive quantum distribution functions. Using it, we find an expression
for the number of particles in a boson system which we compare with other approximate scheme (i.e. fac-
torization approach), and with the recently obtained exact result. To do this, we investigate the predictions
on Bose-Einstein condensation and the blackbody radiation. We find that both approximation techniques
give results similar to (up to O(q−1)) the exact ones, making them a useful tool for computations. Because
of the simplicity of the factorization approach formulae, it appears that this is the easiest way to handle
with physical systems which might exhibit slight deviations from extensivity.

PACS. 05.20.-y Classical statistical mechanics – 05.30.Jp Boson systems – 05.30.Fk Fermion systems and
electron gas

1 Introduction

Since the papers by Tsallis [1,2], non-extensive statistical
formalism has been shown to be not only robust –it allows
generalizations of all necessary fundamental concepts of
thermostatistics [3]–, but also useful –it provides a suit-
able theoretical tool to explain some of the experimental
situations where standard thermostatistics has shortcom-
ings, due to the presence of long-range interactions, or
long-range memory effects, or (multi)-fractal space-time
constraints. See reference [4] for a periodically updated
bibliography.

The core of this generalized formalism is defined
through a generalized entropy

Sq = k
1−

∑W
i=1 p

q
i

q − 1
, (q ∈ <), (1)

where k is a positive constant, {pi} is a set of proba-
bilities and W is the total number of microscopic con-
figurations. It is easy to verify that the q → 1 limit
immediately recovers the usual (extensive) Boltzmann-
Gibbs entropy. Moreover, if a composed system A + B
has probabilities which factorize into those correspond-
ing to the subsystems A and B, then Sq(A + B)/k =
Sq(A)/k+Sq(B)/k+(1−q)Sq(A)Sq(B)/k2. This property
clearly exhibits the fact that the parameter q characterizes
the degree of non-extensivity of any physical system.

a e-mail: tirnakli@sci.ege.edu.tr

The generalization of quantum statistics for non-
extensive systems was only accomplished, up to recent
days, in an approximate fashion, by using two differ-
ent schemes. One of them is the Asymptotic Approach
(AA), of Tsallis et al. [5], the other one is the Fac-
torization Approach (FA), of Büyükkılıç et al. [6]. The
physical applications studied so far within these two ap-
proximations include the blackbody radiation [5,7,8], the
Stefan-Boltzmann constant [9–11], and some aspects of
the early universe physics [12,13]. Moreover, the AA has
also been used in some other works such as the Bose-
Einstein condensation [14], the specific heat of 4He [15],
thermalization of an electron-phonon system [16] and
cosmology [17,18]. Although some detailed analysis on
these approximate schemes [19] suggest that both schemes
could be helpful in physical applications –at least, for
(1− q)-order corrections–, this was still doubtful. A com-
plete verification needs a comparison between the re-
sults of these approximate schemes and the exact ones.
But an exact treatment of non-extensive quantum dis-
tributions was not available up to the recent papers of
Rajagopal et al. [20,21]. Just after this work, Lenzi and
Mendes have also given an exact treatment of blackbody
radiation [22]. All these recent efforts enable us to make a
comparison between the approximate and exact schemes,
which will ultimately show whether the AA and the FA
are useful or not. This will be the main purpose of this
paper.

In Section 2, we review the approximate and ex-
act results and develop an analytical method to derive
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the explicit form of any measurable quantity within the
AA. We compare the approximate and exact results in
Section 3 using (i) the predictions of one of the experi-
mental tests suggested in [20] and (ii) the blackbody radi-
ation. Finally, we give our conclusions and final comments
in Section 4.

2 Non-extensive quantum statistics

2.1 Asymptotic approach

Within the AA, namely in the β(1 − q) → 1 limit, the
generalized partition function is given by [5]

Zq ' Z1

{
1− 1

2
(1− q)β2

〈
Ĥ2
〉

1

}
, (2)

from where the generalized distribution function of non-
interacting bosons can be found, up to (1− q)-order, as

〈n〉q = 〈n〉1 + (1− q) 〈n〉1

{
ln(1/Z1)

+ (x− ψ)

[〈
n2
〉

1

〈n〉1
+ (x− ψ)

(〈
n2
〉

1
−
〈
n3
〉

1

〈n〉1

)]}
,

(3)

where x ≡ βε , ψ ≡ βµ, and

〈n〉1 =
1

ex−ψ − 1
,

〈
n2
〉

1
=

e−(x−ψ) + e−2(x−ψ)[
1− e−(x−ψ)

]2 ,

〈
n3
〉

1
=

e−(x−ψ) + 4e−2(x−ψ) + e−3(x−ψ)[
1− e−(x−ψ)

]3 · (4)

The standard (q = 1) partition function is given by

Z1 =
1

1− e−(x−ψ)
· (5)

This approximation has found a wide range of applica-
tions up to now, however, no attempt has been made for
deriving some of the thermodynamical quantities within
this approach, directly using equation (3).

One aim of this paper is to provide a technique for
computing, in a closed form, the kind of integrals needed
to find the average number of particles within the AA. To
do this, let us start by writing down the definition of the
average number of particles:

〈N〉q =
2πV (2mk)3/2T 3/2

h3

∫ ∞
0

ε1/2 〈n〉q dε, (6)

where all variables have the usual meaning. Using
equation (3) and the definitions of x and ψ, this expression
turns out to be

〈N〉q =
2πV (2mk)3/2T 3/2

h3
[Ist + (1− q)(I2 + I3)] , (7)

where

Ist =
∫ ∞

0

x1/2dx
ex−ψ − 1

, I2 =
∫ ∞

0

(x− ψ)x1/2dx
ex−ψ − 1

, (8)

and

I3 =
∫ ∞

0

(x− ψ)x1/2dx
ex−ψ − 1

[〈
n2
〉

1

〈n〉1

+(x− ψ)

(〈
n2
〉

1
−
〈
n3
〉

1

〈n〉1

)]
.

(9)

I2 and I3 are the (q − 1) order correction to the standard
(q = 1) result and here Ist stands for the standard integral
appearing in the solution of the extensive case [23]. Ist and
I2 have standard forms, and could easily be solved as:

Ist = Γ (3/2)g3/2(z), (10)

I2 =
∫ ∞

0

x5/2−1dx
ex−ψ − 1

− ψ
∫ ∞

0

x3/2−1dx
ex−ψ − 1

= Γ (5/2)g3/2(z)− ψΓ (3/2)g3/2(z), (11)

where z is the fugacity and is defined as z ≡ eβµ. On the
other hand, I3 is more involved, and it takes the form:

I3 = a+ b− 3c− d, (12)

where

a =
∫ ∞

0

(x− ψ)x1/2dx

[ex−ψ − 1]2
,

b =
∫ ∞

0

(x− ψ)x1/2ex−ψdx

[ex−ψ − 1]2
, (13)

c =
∫ ∞

0

(x− ψ)2x1/2ex−ψdx

[ex−ψ − 1]3
,

d =
∫ ∞

0

(x− ψ)2x1/2e2(x−ψ)dx

[ex−ψ − 1]3
· (14)

In an Appendix, we provide an analytical technique
(maybe there are others) to compute each one of these in-
tegrals. Using this technique, we obtain the average num-
ber of particles as:

〈Ne〉q
h3

2πV (2mkT )3/2
= Γ (3/2)g3/2(z) + (q − 1)

√
π

×
[

3
2
g3/2(z)− 9

8
g5/2(z) +

7
4
ψg3/2(z)

−2ψg1/2(z)− 1
2
ψ2g1/2(z) +

9
8
ψ2g−1/2(z)

]
. (15)

Here, 〈Ne〉q stands for the number of particles in the ex-
cited states (ε 6= 0). As in the standard case, we have
separated the contribution of the state given by ε = 0,
which has zero weight in the integrals. For this level of
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Fig. 1. Nq(ε = 0) of the AA as a function of z for different q
values.

energy, we found,

〈N〉q (ε = 0) =
z

1− z

{
1 + (q − 1)

[
ln z +

z ln z
1− z

− ln z
1− z + 3

z(ln z)2

(1− z)2
+

(ln z)2

(1− z)2

]}
. (16)

When z � 1, all the correction terms go to zero. When
z → 1, some of the terms are divergent but the usual shape
is unchanged. This can be seen in Figure 1.

Numerical analysis, which we show in Figure 2, illus-
trates that the maximum correction is attained for z = 1.
Then, the number of particles in all excited states is
bounded by,

〈Ne〉q ≤
2πV (2mk)3/2T 3/2

h3
[2.315 + (q − 1)4.27] . (17)

It is worth noticing that the AA is such that not all terms
in the (1− q) correction are positive (or negative, depend-
ing on the choice of q) definite. Moreover, their maximum
values are not always attained at middle points of the
interval of interest, and although they do have bounded
expressions, the maximum correction is obtained only for
z = 1. This differs from what happened in the FA, where
each term had a maximum value within the interval of
interest [24]. The order of magnitude of the maximum
correction is, however, the same in both approximations.

Any interested reader could easily apply the same tech-
nique, which we introduced in the Appendix, to com-
pute any other thermodynamical quantity, whenever it is
needed.

]
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Fig. 2. (a) The contribution of the different terms that en-
ter the (q − 1) correction to the average number of bosons
within the AA. On the right corner of the figure, the curves
corresponds to the following order: first, fourth, sixth, fifth,
second and third term. (b) The total (q − 1) correction to the
average number of bosons within the AA. Its maximum pos-
sible value is attained at z = 1, and the correction goes as
π1/2(3/2ζ(3/2) − 9/8ζ(5/2)) = 4.27.

2.2 Factorization approach

Within the FA [6], the generalized distribution function of
bosons is given, at (1− q) order, by [24]

〈n〉q = 〈n〉1 + (q − 1)
(x− ψ)2ex−ψ

2 (ex−ψ − 1)2 , (18)
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where 〈n〉1, x and ψ have the same definitions as before.
At this point, the remarkably simpler form of this result,
when compared to the result of the AA (Eq. (3)), is worth
emphasizing.

In this context, we have found general expressions
for some thermodynamical quantities of bosons and
fermions [24]; here we quote only the average number of
particles for bosons, since it will be adequate for our pro-
posed comparison1:

〈Ne〉q ≤
2πV (2mk)3/2T 3/2

h3
[2.315 + (q − 1)3.079] . (19)

2.3 The exact result

Although the results of the AA and the FA have been
successfully used in a wide range of physical applications,
an exact treatment of non-extensive quantum statistics
was lacking until the recent work of Rajagopal, Mendes
and Lenzi [20,21]. In their analysis, they have given the
many-particle q-Green function in terms of a paramet-
ric contour integral over a kernel, multiplied by the usual
grand canonical one particle Green function which now
depends on q. They managed to obtain exact expressions
for thermodynamical quantities, such as 〈N〉q.

To proceed further, let us quote here some of the re-
sults of [20,21]. Rajagopal et al. have used the general
contour integral of the form,

b1−z
i

2π

∫
C

du exp(−bu)(−u)−z =
1

Γ (z)
, (20)

with b > 0 and Re z > 0, and where the contour C starts
from +∞ on the real axis, encircles the origin once coun-
terclockwise and returns to +∞. Using the q-Green func-
tions, and after some cumbersome algebra, they finally
obtain (for bosons)

〈N〉q = V

∫
C

duK(2)
q (u)

∫ ∞
−∞

dω
2π

×
∫

dDp
(2π)D

Z1(−β(1− q)u, µ)[
e−β(1−q)u(ω−µ) − 1

]A(p;ω), (21)

where D is the dimension of space, A(p;ω) is the spectral
weight function and

K(2)
q (u) = i

Γ (1/(1− q))
2π(Zq)q

exp(−u)(−u)−1/(1−q), (22)

and

Zq(β, µ) =
∫
C

duK(1)
q (u)Z1(−βu(1− q), µ). (23)

1 We take advantage here to signal out a mistake in the last
equation of reference [24], where the correction appears to be
proportional to 0.886 (q − 1) and should have a minus sign in
front of it [25].

This exact expression for the average number of particles
finally gives us the opportunity to make a comparison be-
tween the exact and the approximate results.

3 Exact and approximate results

3.1 Bose-Einstein condensate

One of possible experimental tests of the validity of the
q-framework is based on a recent work on Bose-Einstein
condensation of a small number of atoms (of the order of
100 to 170), confined to a small region of space by mag-
netic trapping [26]. By taking free particle spectral weight
function, namely A(p;ω) = 2πδ(ω − p2/2m), near the
Bose-Einstein condensation, they have found

〈N〉q
〈N〉1

'
[

(Tc)q
(Tc)1

]3/2 Γ
(

2−q
1−q

)
(1− q)1/2Γ

(
2−q
1−q + 1

2

)
×
{

1 +
〈N〉1

(1− q)3/2

ζ(5/2)
ζ(3/2)

[
(Tc)q
(Tc)1

]3/2

×

Γ
(

2−q
1−q + 1

2

)
Γ
(

2−q
1−q + 2

) − q Γ
(

2−q
1−q

)
Γ
(

2−q
1−q + 3

2

)
 . (24)

Here, the ' sign reflects that this equation is valid near
the Bose-Einstein condensation, which does not change
the fact that it is an exact result. We may now expand
this expression in powers of (q − 1). Up to first order,

〈N〉q
〈N〉1

'
[

(Tc)q
(Tc)1

]3/2
{

1 + (q − 1)

(
0.456

− 0.023 〈N〉1
[

(Tc)q
(Tc)1

]3/2
)}

.
(25)

The two previous equations deviate from each other very
soon when (q − 1)2 is not negligible.

Let us now derive similar expressions for the AA and
FA in order to compare them with equations (24, 25). The
condition for the appearance of Bose-Einstein condensa-
tion can be expressed as

〈N〉q > 〈Ne〉q . (26)

Alternatively, with constant 〈N〉q and V , using
equation (17) for the AA and equation (19) for the
FA, this condition can be recast in the form

T < (Tc)q =
h2

(2π)3/22mk

{ 〈N〉q
V [2.315 + (q − 1)κ]

}2/3

,

(27)
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where κ = 4.27 for the AA and κ = 3.078 for the FA.
Then, we can organize these expressions to give

〈N〉q
〈N〉1

=
[ (Tc)q

(Tc)1

]3/2
[2.315 + (q − 1)κ]

2.315
. (28)

Equations (17, 19) have corrections which are trivial (not
depending on z) just because we have approximated them:
the actual complete results are equations (15, 16) for the
AA, while those for the FA can be found in our pre-
vious paper [24]. We managed the dependence on z in
order to obtain an upper bound for the corrections and
simplify the analysis that follows. Differences between
equations (28, 25) are worth noticing: the later depends
on (Tc)q and 〈N〉1 in a much stronger way. However, as
we shall see, for q close to 1 these differences are not im-
portant.

We would now like to choose physically suitable q val-
ues. An early Universe test based on the FA has shown [13]
to produce a bound |q − 1| ≤ 4.01 × 10−3, thus we have
q = 0.996. The other q value which we use comes from a
very recent work on pion transverse-momentum correla-
tions in Pb-Pb high-energy nuclear collisions [27]. In that
work, a deviation of |q − 1| = 0.015 from the standard
statistics is found to be sufficient for eliminating the puz-
zling discrepancy between theoretical calculations and ex-
perimental data [27]. Thus, we shall use q = 0.985 (in
fact, in [27], q = 1.015 has been used, but since the exact
result is given for q < 1 values, we must take q = 0.985,
which has the same |q− 1| deviation). In Figure 3 we plot
〈N〉q / 〈N〉1 versus (Tc)q / (Tc)1 for two representative val-
ues of 〈N〉1, and the two quoted values of q. However, note
again that in our approximated schemes, 〈N〉q / 〈N〉1 as
a function of (Tc)q / (Tc)1 is in fact independent of the
particular value of 〈N〉1. From Figure 3, the following
conclusions can be drawn: At the order of such q values,
the AA and the FA are almost the same, and in (1− q)-
order correction, any of them could be used with the same
confidence (maybe the FA would be preferable due to its
remarkably simpler form). Only in those situations of ex-
tremely high experimental precision one could distinguish
between the exact and approximate results.

3.2 Blackbody radiation

Very recently, an exact analysis of the blackbody radiation
within the q-framework has been given [22]. This exact
analysis gives the generalization of the Stefan-Boltzmann
law as

Uq =
3kTξ3
Zqq

∞∑
m=0

ξm3
m!

Γ [(2− q)/(1− q)]
Γ [(2− q)/(1− q) + 3(m+ 1)]

,

(29)

where

Zq =
∞∑
m=0

ξm3
m!

Γ [(2− q)/(1− q)]
Γ [(2− q)/(1− q) + 3m]

, (30)
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Fig. 3. Bose-Einstein condensation: plot of 〈N〉q / 〈N〉1 as a
function of (Tc)q / (Tc)1 for (a) q = 0.996 and (b) q = 0.985.

and

ξ3 =
4Γ (3)ζ(4)

[2π1/2(1− q)]3Γ (3/2)

(
2πV 1/3kT

hc

)3

. (31)
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Fig. 4. Blackbody radiation: Internal energy versus
(2πkT )/(hc) for q = 0.99947.

Let us now recall the Stefan-Boltzmann law derived by
using the AA [9,10] and the FA [11]:

Uq =
8πk4T 4V

c3h3
[6.4939− (1− q)θ] (32)

where θ = 40.018 for the AA and θ = 62.215 for the FA.
For the comparison of the exact and approximate

Stefan-Boltzmann laws, we again try to choose a value of q
which is in accordance with the blackbody radiation. The
possible q-correction could be at the order of 10−4 or 10−5.
Thus, here we shall use again the largest deviation pre-
dicted for the q-correction [9], namely |q−1| ≤ 5.3×10−4,
which gives q = 0.99947. In Figure 4 we present the be-
haviour of the exact (Eq. (29)) and the approximate re-
sults (Eq. (32)) for q = 0.99947. It is seen from the figure
that for such order of q-correction the approximate re-
sults are very close to the standard (q = 1) case without
exhibiting any curvature, contrary to the exact result.

4 Final remarks

We have managed to develop an analytical technique
to express thermodynamical quantities for the asymp-
totic approach of quantum distribution functions. We
have shown that, for simple boson systems, and for all
q-values admitted by the existing bounds, both approxi-
mate schemes (the AA and the FA) are in agreement with
the exact result (see figures). The magnitude of the de-
viation is quantified in previous formulae and could be

seen if there is enough experimental precision. Otherwise,
the simpler form that the factorization approach exhibits
makes a case for its use as a standard and safe procedure
for (1− q)-order corrections.
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Appendix A

The calculation of the integral a can be done as follows.
Let us define, introducing an extra parameter m,

I =
∫ ∞

0

(x− ψ)x1/2dx
ex−ψ −m · (A.1)

Then, we could write,

a =
[

dI
dm

]
m=1

=

[∫ ∞
0

(x− ψ)x1/2dx

(ex−ψ −m)2

]
m=1

. (A.2)

Defining m−1 ≡ eφ, it is easy to write,

am =
d

dm

∫ ∞
0

(x− ψ)x1/2dx
m (m−1ex−ψ − 1)

=
d

dm

{
1
m

[∫ ∞
0

x3/2dx
ex−ψ′ − 1

− ψ
∫ ∞

0

x1/2dx
ex−ψ′ − 1

]}
,

(A.3)

where ψ′ ≡ ψ − φ. This let us to obtain,

am =
d

dm

[
1
m

(
Γ (5/2)g5/2(ψ′)− ψΓ (3/2)g3/2(ψ′)

)]
.

(A.4)

Finally this gives us the solution of the integral a:

a = Γ (5/2)g3/2(z)− Γ (5/2)g5/2(z)

− ψΓ (3/2)g1/2(z) + ψΓ (3/2)g3/2(z). (A.5)

For the calculation of c, we may conveniently define al as,

al =
∫

(x− ψ)x1/2dx[
el(x−ψ) − 1

]2 (A.6)
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and derive with respect to l to obtain[
dal
dl

]
l=1

= −2
∫

(x− ψ)2x1/2ex−ψdx
(ex−ψ − 1)3

= −2c. (A.7)

Now, to compute al, we may change variables as follows:

x̃ = lx, ψ̃ = lψ. (A.8)

We then obtain,

al =
1
l5/2

∫
(x̃− ψ̃)x̃1/2dx̃
(e(x̃−ψ̃) − 1)2

=
1
l5/2

{
Γ (5/2)

[
g3/2(ψ̃)− g5/2(ψ̃)

]
+ψ̃Γ (3/2)

[
g3/2(ψ̃)− g1/2(ψ̃)

]}
. (A.9)

Deriving with respect to l, we get

dal
dl

= − 5
2l7/2

{
Γ (5/2)

[
g3/2(ψ̃)− g5/2(ψ̃)

]
+ψ̃Γ (3/2)

[
g3/2(ψ̃)− g1/2(ψ̃)

]}
+

1
l5/2

{
Γ (5/2)

[
ψg1/2(ψ̃)− ψg3/2(ψ̃)

]
+ψΓ (3/2)

[
g3/2(ψ̃)− g1/2(ψ̃)

]
+ψ̃Γ (3/2)

[
ψg1/2(ψ̃)− ψg−1/2(ψ̃)

]}
. (A.10)

From this equation, the integral c can be obtained by mak-
ing l = 1 and ψ̃ = ψ. Here, we should note that, in all
previous calculations, we have used (i) the result

gn−1(z) = z
∂

∂z
[gn(z)] =

∂

∂ ln(z)
[gn(z)] , (A.11)

and (ii) Robinson’s power series representation [28] (which
is valid for all n values):

gn(α) = Γ (1− n)αn−1 +
∞∑
l=0

(−)l

l!
ζ(n− l)αl, (A.12)

for the gn functions, where α = − ln(z) and ζ is the Rie-
mann zeta function. Using this result, one can recover the
relationship for the derivatives of gn functions, and use
it to evaluate g−1/2. We finally obtain the result for the
integral c:

c =
5
4
Γ (5/2)g3/2(ψ)− 5

4
Γ (5/2)g5/2(ψ)

+
5
4
Γ (3/2)ψg3/2(ψ)− 5

4
Γ (3/2)ψg1/2(ψ)

− 1
2
Γ (5/2)ψg1/2(ψ) +

1
2
Γ (5/2)ψg3/2(ψ)

− 1
2
Γ (3/2)ψg3/2(ψ) +

1
2
Γ (3/2)ψg1/2(ψ)

− 1
2
Γ (3/2)ψ2g1/2(ψ) +

1
2
Γ (3/2)ψ2g−1/2(ψ). (A.13)

We proceed further to compute integral b. To do so, we
apply the following procedure. Let us define a new integral
with an extra parameter, such that

am =
∫ ∞

0

x1/2dx
em(x−ψ) − 1

=
1

m3/2

∫ ∞
0

x̃1/2dx̃
e(x̃−ψ̃) − 1

=
1

m3/2
Γ (3/2)g3/2(ψ̃), (A.14)

where we have used the change of variable x̃ = mx and
ψ̃ = mψ. If we now derive with respect to m, we obtain,[

dam
dm

]
m=1

=
[
−
∫ ∞

0

(x− ψ)x1/2em(x−ψ)dx
(em(x−ψ) − 1)2

]
m=1

= −b.

(A.15)

Since we have,

dam
dm

= − 3
2m5/2

Γ (3/2)g3/2(ψ̃) +
1

m3/2
Γ (3/2)ψg1/2(ψ̃),

(A.16)

it is easy to write down the solution of the integral b:

b =
3
2
Γ (3/2)g3/2(ψ)− Γ (3/2)ψg1/2(ψ). (A.17)

Once the integral b is calculated, the integral d can be
obtained as follows. Let us define am as above. Deriving
it twice with respect to the parameter m, we obtain[

d2am
dm2

]
= 2d− Inew, (A.18)

where,

Inew =
∫ ∞

0

(x− ψ)2x1/2em(x−ψ)dx[
em(x−ψ) − 1

]2 · (A.19)

It is easy to compute this integral with a similar trick. We
need to define, with usual notation,

Iext =
∫ ∞

0

(x− ψ)x1/2dx[
el(x−ψ) − 1

]
=

1
l5/2

[
Γ (5/2)g5/2(ψ̃)− ψ̃Γ (3/2)g3/2(ψ̃)

]
(A.20)

and derive it with respect to l. Further evaluation in l = 1
reproduces Inew:

Inew =
5
2
Γ (5/2)g5/2(ψ)− ψ 3

2
Γ (3/2)g3/2(ψ)

− ψΓ (5/2)g3/2(ψ) + ψ2Γ (3/2)g1/2(ψ). (A.21)

Thus, we finally have the solution of the integral d:

d =
15
8
Γ (3/2)g3/2(ψ)− 3

2
ψΓ (3/2)g1/2(ψ)

+
3
4
ψ2Γ (3/2)g−1/2(ψ) +

5
4
Γ (5/2)g5/2(ψ)

− ψ 3
4
Γ (3/2)g3/2(ψ) − 1

2
ψΓ (5/2)g3/2(ψ)

+
1
2
ψΓ (3/2)g3/2(ψ) +

1
2
ψ2Γ (3/2)g1/2(ψ). (A.22)



698 The European Physical Journal B

References

1. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

2. E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991);
corrigenda 24, 3187 (1991); 25, 1019 (1992).

3. C. Tsallis, Physica A 221, 277 (1995); C. Tsallis, R.S.
Mendes, A.R. Plastino, Physica A 261, 534 (1998).

4. http://tsallis.cat.cbpf.br/biblio.htm

5. C. Tsallis, F.C. Sa Barreto, E.D. Loh, Phys. Rev. E 52,
1447 (1995).
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